
UCRL-MI-205645

Attachment 1

Draft Statement of Work

Open Source High Performance Production
Cluster InfiniBand Infrastructure

National Nuclear Security Administration

Advanced Simulation and Computing

PathForward Program

Version 22

July 13, 2004

OSSODA IBA SOW

 - 2 -

CONTENTS
1 INTRODUCTION..5

1.1 REQUIREMENT DEFINITIONS..6
2 OPEN INFINIBAND STACK WITH HPC CAPABILITIES..7

2.1 KEY DEFININTIONS..7
2.2 OPENIB ACCESS LAYER [MR]...8

2.2.1 Low Latency Interrupt Mode [TR-1]..8
2.2.2 Kernel and User Space Verbs API Interfaces [TR-1] ..8
2.2.3 Integrate open source Verbs API patches for stability and performance enhancements into main OpenIB Verbs
API stack [TR-1] ...8
2.2.4 High Performance RC Send/Recv [TR-1] ..8
2.2.5 High Performance RC RDMA read/write Operations [TR-1] ...8
2.2.6 High Performance RC Atomic Operations [TR-1] ..8
2.2.7 High Performance UD Send/Recv [TR-1] ...9
2.2.8 Design OpenIB access layer to allow ease of portability to multi-vendor hardware [TR-1]9
2.2.9 Supported Host IO Interfaces [TR-1] ..9
2.2.10 Multiple HCA per SMP [TR-1] ...9
2.2.11 Reliable Multicast [TR-1] ...9
2.2.12 OpenIB Access Layer Latency [TR-1]...9
2.2.13 Extensible API and API implementation to SM, SA, and CM services for user and kernel space applications
and modules [TR-1] ...9
2.2.14 Enhancements to Verbs API for URDMA [TR-2] ...9
2.2.15 Enhancements to Verbs API for UD Atomic Operations [TR-2] ..10
2.2.16 High Performance URDMA Operations [TR-2] ...10
2.2.17 High Performance UD Atomic Operations [TR-2] ...10
2.2.18 High Performance Gather/Scatter operations [TR-2] ..10
2.2.19 Support for service level to virtual lane mapping, partitioning, automatic path migration, and multi-path
routing [TR-2]..10

2.3 INFINIBAND NETWORK MANAGEMENT [MR] ...10
2.3.1 Subnet Manager and Subnet Administrator for HPC Clusters [TR-1] ..10
2.3.2 Fast and Scalable Connection Manager [TR-1]..11
2.3.3 Network topology awareness and verification services [TR-2] ...11
2.3.4 Optimized routing algorithms for High Performance Computing [TR-2] ...12

2.4 SCALABLE INFINIBAND DIAGNOSTIC AND MANAGEMENT TOOLS [MR] ...12
2.4.1 Fast, Scalable and Reliable Interconnect Diagnostics [TR-1] ..12
2.4.2 Host Side Diagnostic and Management Tools [TR-1] ...12
2.4.3 Fabric Explorer and Debugging Tools [TR-1] ..13
2.4.4 Fabric performance test suite for scaling, bandwidth, and latency [TR-2] ...13
2.4.5 InfiniBand Route Visualization [TR-2] ..13

OSSODA IBA SOW

 - 3 -

2.4.6 Cluster Topology Visualization Tools [TR-2]..13
2.4.7 Topology verification tools [TR-2] ..13

2.5 INFINIBAND UPPER LAYER PROTOCOLS [MR] ..13
2.5.1 High Performance IPoIB [TR-1] ...13
2.5.2 IPoIB with DHCP [TR-2] ..13
2.5.3 High Performance SDP [TR-1] ...13
2.5.4 SDP transparent sockets support [TR-2] ...14
2.5.5 Sandia Portals [TR-1]..14
2.5.6 Open Source MPI 2.0 [MR]...14

2.6 HIGH PERFORMANCE COMPUTING STABILITY AND ROBUSTNESS..16
2.6.1 Stability [TR-1] ..17
2.6.2 Robustness [TR-1] ...17

3 SOFTWARE DEVELOPMENT...18
3.1 PLATFORM AND OS INDEPENDENCE AND PORTABILITY [MR]...18

3.1.1 Tracking Latest 2.6 Kernels [MR] ...18
3.1.2 Tracking Latest RHEL Kernels [TR-1] ..18
3.1.3 Tracking BProc Linux [TR-1]..18
3.1.4 Linux Normal Format Coding Style [TR-1]...18
3.1.5 Support for Intel IA32 architecture [TR-1]..18
3.1.6 Support for Intel and AMD x86-64 [TR-1] ..18
3.1.7 Support for Intel Itanium (IA64) [TR-1] ..18
3.1.8 Tracking Latest SuSE Kernels [TR-3]..18
3.1.9 Support for IBM PowerPC 970 [TR-3]..19

3.2 OPEN SOURCE SOFTWARE [MR] ...19
3.2.1 Documentation [MR] ...19
3.2.2 Source Code Documentation System [TR-1] ...19
3.2.3 Access to Source Code Repository [TR-1]...19

3.3 SOFTWARE BUILD ENVIRONMENT [TR-1] ...19
3.3.1 Development and Testing with GNU compilers [TR-1]...19
3.3.2 Support for NPTL [TR-1]...19
3.3.3 Build and Install Requirements [TR-1]..19

3.4 EXTENSIBILITY AND USABILITY OF DESIGN [MR]...20
3.4.1 Ease of Extensibility [TR-1]...20
3.4.2 Interface Usability Testing [TR-1]...20

3.5 SOFTWARE MAINTENANCE AND SUPPORT [MR] ...20
3.5.1 Software Support Mechanisms [TR-1]...21
3.5.2 Software Support Response [TR-1]..21

3.6 TESTING ENVIRONMENT [MR] ..21
4 PROJECT MANAGEMENT ..23

OSSODA IBA SOW

 - 4 -

4.1 PROJECT PLAN [MR] ...23
4.2 MILESTONES [MR] ..23

4.2.1 Project Plan (1 Month) ..23
4.2.2 High Level Design Document (1 Month) ...23
4.2.3 OpenIB Kernel Module, HCA Driver, and Core Access Layer (3 Months) ...23
4.2.4 OpenIB Software Alpha Stack HPC Design Document (4.5 Months)..23
4.2.5 Alpha Release of OpenIB Access Layer with HPC capabilities(6 Months) ...24
4.2.6 Alpha Release of OpenIB ULPs with HPC capabilities(9 Months) ...24
4.2.7 OpenIB Stack Alpha Release HPC Test Plan (9 Months) ..24
4.2.8 OpenIB Software Stack Alpha Release with HPC capabilities(12 Months)...24
4.2.9 OpenIB Software Beta HPC Stack Design Document (12 Months) ...24
4.2.10 OpenIB Beta Stack with HPC capabilities Test Plan (15 Months) ...24
4.2.11 OpenIB Software Beta Stack Release (15 months)..24
4.2.12 OpenIB Software Stack Final Release with HPC capabilities (18 Months)..24

5 GLOSSARY..25

OSSODA IBA SOW

 - 5 -

1 INTRODUCTION
The InfiniBand Architecture (IBA) is emerging as a multi-vendor, commodity, open-standard network
interconnect which has proven to have the characteristics of a high performance cluster interconnect:
high bandwidth; low latency; minimal CPU overhead; and remote direct memory access (RDMA)
capabilities. Current InfiniBand technology is capable of delivering over 2,700 MB/s and sub 5µs
(micro-second) latencies through the MPI API to user applications running commodity nodes in large-
scale clusters.
InfiniBand coupled with HyperTransport or PCI-Express local I/O channels balances the data
bandwidths within a cluster and removes the bottlenecks in the high performance inter-processor
communication infrastructure necessary for current large-scale clusters and related storage systems. In
addition, the InfiniBand hardware specification has a roadmap to increase data rates that track well with
future processor, memory, local I/O, and storage system bandwidth performance. Hence, InfiniBand
enables balanced cluster architectures to be built today and into the future with completely commodity
components.
The recent formation of the OpenIB organization provides a potential open source community
infrastructure for future development of an InfiniBand software stack that could become common across
the High Performance Computing (HPC), Enterprise and embedded/real time markets. The OpenIB
software stack is the intended final destination for the deliverables required by this Statement of Work
(SOW).
Several InfiniBand software releases have been made under open source licenses and have been
contributed to the OpenIB repository. These releases can provide a basis for a long term InfiniBand
open source software solution that would include HPC capabilities, be sustained by the standards and
practices of open source, and be accepted into the Linux kernel and Linux distributions.
Currently many of the open source releases have been implemented independently, optimized within a
closed development environment, and focused on enterprise computing and data centers. As a result the
current structure of these releases are overly complex, difficult to build, and provides very limited
portability across different Linux kernels and distributions, and limited multi-vendor support.
The goal of this project is to accelerate the design and implementation improvements necessary for the
completion of an Open Source OpenIB solution. The resulting product will be required to meet the
scalability, performance, portability, reliability, and manageability requirements of the ASC (Advanced
Simulation and Computing) Program during its next phase, and thereby the HPC community as a whole.
In this SOW we describe a set of features to be developed, project milestones, and testing results to be
achieved which we believe will produce improvements to the OpenIB software stack to meet the needs
of the National Nuclear Security Administration (NNSA) and the ASC Program that will be production
ready, high performance, scalable, extensible, and reliable.
The HPC community has found five key areas where significant design and implementation work is
needed in order for the open source software solution to meet the stringent requirements for HPC. These
areas are prioritized as follows:

• A Unified Open Source OpenIB stack with HPC capabilities

• Scalable InfiniBand diagnostic and management tools

• Scalable system software and MPI middleware

• Latency reduction

OSSODA IBA SOW

 - 6 -

• Platform Independence and Portability
An open source InfiniBand (IB) software infrastructure for high performance Linux production clusters
that is adoptable by the OpenIB and open source community is required. The following should be the
minimal and sufficient set of software needed for a complete solution: 1) complete InfiniBand access
layer including host channel adapter (HCA) device drivers, user and kernel space Verbs interface,
connection management, resource management; 2) subnet management and subnet administration; and
3) HPC upper layer protocols for MPI, IPoIB, SDP, and Sandia Portals. This software stack should be
portable to multiple InfiniBand hardware solutions (HCA's, fat-tree, Clos, and crossbar switches, and
gateway devices) from multiple vendors and InfiniBand silicon providers. In addition, this software
stack should be designed to provide a base software environment for multiple hardware IB generations
including at least 4x, 4x DDR, 12x, 12x DDR and 12x QDR. The upper layer protocols for SRP,
kDAPL, uDAPL, iSCSI, iSER, etc. are of interest, must not be precluded from inclusion in the OpenIB
stack, but are not within the scope of this SOW at this time.
HPC places stringent requirements on software including high performance and scalability. NNSA
large-scale clusters are using 1,024-8,192 processors today, and are expected to employ 10,000’s of
processors in the near future. Therefore, this OpenIB software development is required to scale to 4,096
node ports implemented with multiple switches interconnected, with copper or fiber cables, in stages to
form fat-tree, Clos, near trees, and meshed networks. In addition, it is anticipated that large SMPs may
be employed as cluster nodes. In order to maintain communication to computation (B:F ratio) balance,
this OpenIB software stack should efficiently utilize multiple planes of interconnects. This includes
multiple switch planes, multiple links per HCA and multiple HCA's per SMP cluster node.

1.1 Requirement Definitions
Particular paragraphs of the Statement of Work have the following priority designations.
(a) Mandatory requirements are designated as (MR). Mandatory requirements are items that are
essential to the University and reflect the minimum qualifications an Offeror must meet in order to have
their proposal evaluated further for selection.
(b) Target Requirements are designated as (TR-1, TR-2 and TR-3). Each requirement so labeled
deals with features, components, performance characteristics or other properties that is considered a part
of the OpenIB software stack, but will not be a determining factor of response compliance. Target
requirements are prioritized with a dash number with TR-1 being the most important. Taken together,
the aggregate of the MR, and TR-1 requirements form a baseline OpenIB software stack. TR-1 targets
are as important to the program as mandatory requirements, but not meeting any particular TR-1 target
requirement is insufficient to render a proposal as non-responsive. TR-2 targets are second priority after
TR-1 requirements. TR-2 requirements are considered goals that boost a minimal OpenIB software
stack, when offered as an aggregate of MR, TR-1 and TR-2 requirements, into the moderately useful
category. TR-3 targets are third priority after TR-2 requirements. TR-3 requirements are considered
stretch goals that boost a moderately useful system, taken together as an aggregate of MR, TR-1, TR-2
and TR-3 requirements, into the highly useful category. Thus, the ideal OpenIB software stack will
meet or exceed all MR, TR-1, TR-2 and TR-3 requirements. Target Requirement responses will be
considered as part of the evaluation of Technical Proposal Excellence (see Attachment 2, Proposal
Evaluation and Proposal Preparation Instructions).
In addition to the Mandatory Requirements, the Offeror may propose any Target Requirements or other
features for the software, and any additional features consistent with the objectives of this project that
the Offeror believes will be of benefit to the University. Target Requirements and additional features
proposed by the successful Offeror may be included in the resulting Subcontract.

OSSODA IBA SOW

 - 7 -

2 OPEN INFINIBAND STACK WITH HPC CAPABILITIES
The recent release of several open source InfiniBand software stacks provides a foundation for
developing a unified open source InfiniBand stack with HPC capabilities. The design of this stack
should focus on meeting the performance, scalability, manageability, reliability, and portability
requirements of high performance computing. This unified stack should be implemented with an open
software development environment where a community of open source developers can conduct design
reviews and contribute to the code base.
The current situation with multiple InfiniBand stacks has lead to incomplete feature sets, higher code
management costs, and incompatibilities between InfiniBand software and hardware. A unified effort
within the InfiniBand and open source communities to develop an open source solution would allow the
HPC, enterprise, grid, and storage industries to leverage software across multiple InfiniBand hardware
solutions and computing architectures.

2.1 KEY DEFINITIONS
To facilitate the development of an Open Source InfiniBand software stack, this SOW intends to
accelerate the design, development and testing of the “OpenIB” software stack (www.openib.org). This
stack is intended to include, from top to bottom, a completely Open Source Software stack (including
device driver, access layer, protocols, and tools) that meets the Linux community’s requirements, and
addresses the performance, scalability, robustness, and reliability requirements of large HPC Linux
clusters in production environments. This SOW envisions a rigorous testing regime on large clusters to
harden and verify the HPC capabilities of the OpenIB software stack.
To that end this SOW defines the OpenIB software stack as the following components:

• Kernel modules – Changes to the Linux kernel needed to support the rest of the OpenIB
software stack.

• Device Driver – Linux device driver to function the IB host channel adapter devices on a
node.

• IB Access Layer – Low level API that exposes IB verbs, CM, SM and SA functionality in a
vendor neutral and standard compliant manner.

• Subnet Manager – Software entity that discovers network topology, initializes the subnet,
establishes routes, and provides regular subnet sweeps.

• Connection Management – Service to establish, maintain, and status communication path
between remote peers.

• Subnet Administrator – Service to store, track, and status the IB hardware configuration and
routing information.

• Upper Layer Protocols (MPI, IPoIB, SDP and Sandia Portals) – APIs for applications to
perform IB communications operations

• Diagnostics and management tools – Commands and APIs shall determine the hardware and
software state of the IB configuration and manipulate that configuration.

• Tests harness and modules – Software shall automatically test the functionality, performance,
reliability, and robustness of the components of the OpenIB software stack.

• Documentation – All provided software shall be documented so that personnel unfamiliar
with the IB stack structure may easily install and manage an IB cluster. Documentation shall

OSSODA IBA SOW

 - 8 -

be provided so that personnel may make code enhancements and extensions to any software
layer (driver, access layer, ULPs, diagnostics) of the IB software stack.

The following terms will be use throughout the remainder of this document:

• Aggregate Link Bandwidth (LAB) is defined as the minimum of the aggregate memory
bandwidth, aggregate bus bandwidth, or the sum of uni-directional link peak user payload
data bandwidth.

• Aggregate Bi-directional Link Bandwidth (BLAB) is defined as the minimum of the
aggregate memory bandwidth, aggregate bus bandwidth, or the sum bi-directional link peak
user payload data bandwidth.

2.2 OpenIB Access Layer [MR]
The Offeror’s IB software stack shall include software developed to the OpenIB Access Layer. This
work shall be part of the OpenIB (www.openib.org) community effort.

2.2.1 Low Latency Interrupt Mode [TR-1]
The Offeror's delivered OpenIB software stack kernel and user space latency for interrupt (non-
polling) style communications in the OpenIB access layer should be within 10% of that for polling
mode.

2.2.2 Kernel and User Space Verbs API Interfaces [TR-1]
The OpenIB Access Layer portion of the IB software stack should include both the Verbs API
kernel and user space interfaces (data path) whose functionality is defined in the InfiniBand
architecture specification volume 1 chapter 11 (www.infinibandta.org). The Access Layer should
also include a Verbs framework with clear boundaries between standards-compliant Verbs and
vendor extensions.

2.2.3 Integrate open source Verbs API patches for stability and performance
enhancements into main OpenIB Verbs API stack [TR-1]

The Offeror should integrate any Verbs API patches into the OpenIB software stack. These Verbs
API patches should include future work as well as recently open sourced patches that have not been
integrated into the OpenIB software stack.

2.2.4 High Performance RC Send/Recv [TR-1]
The Offeror should deliver OpenIB reliable connections (RC) send/receive operations that will
obtain 90% of the LAB of the supported IB devices. Both the kernel and user space interfaces
should deliver this level of performance.

2.2.5 High Performance RC RDMA read/write Operations [TR-1]
The Offeror should deliver OpenIB reliable connection (RC) RDMA operations that will obtain
95% of the LAB of supported IB devices. Both the kernel and user space interfaces should deliver
this level of performance.

2.2.6 High Performance RC Atomic Operations [TR-1]
The Offeror should deliver OpenIB reliable connection (RC) atomic operations (fetch and add,
compare and swap) that should obtain 3 µs (micro-second) latency on supported IB devices. Both
the kernel and user space interfaces should deliver this level of performance. The latency should
be measured from a user process on one node to another user process on any other node in the
cluster.

OSSODA IBA SOW

 - 9 -

2.2.7 High Performance UD Send/Recv [TR-1]
The Offeror should deliver OpenIB unreliable datagram (UD) send/receive operations that will
obtain 90% of the LAB of supported IB devices. Both the kernel and user space interfaces should
deliver this level of performance.

2.2.8 Design OpenIB access layer to allow ease of portability to multi-vendor
hardware [TR-1]

The Offeror’s OpenIB access layer should be designed to be portable to IB host channel adapters,
switches, gateway, and router devices from multiple vendors. The Offeror should describe in the
SOW response the proposed strategy for designing the OpenIB access layer in order to facilitate
portability.

2.2.9 Supported Host IO Interfaces [TR-1]
The Offeror's delivered OpenIB access layer should support host channel adapters with PCI
Express, HyperTransport and PCI-X 64b/133Mhz interfaces. The Offeror should describe the
proposed strategy for designing the OpenIB access layer in order to obtain the performance levels
described in this SOW from these host IO interfaces.

2.2.10 Multiple HCA per SMP [TR-1]
The Offeror's OpenIB access layer software should support a scalable design for multiple host
channel adapters per SMP node. The Offeror should describe the proposed strategy for designing
the OpenIB access layer in order to obtain near-linear scaling from multiple HCAs per SMP node.

2.2.11 Reliable Multicast [TR-1]
The Offeror's OpenIB access layer software should support scalable reliable multicast. The Offeror
should describe the proposed strategy for designing and implementing scalable and high
performance reliable multicast.

2.2.12 OpenIB Access Layer Latency [TR-1]
The Offeror's OpenIB access layer interface software overhead should be less than 1 µs as measured
by sending a minimum length message from a user process on one node to another user process on
any other node in the cluster and receiving back an acknowledgment divided by two (ping-pong
latency).

2.2.13 Extensible API and API implementation to SM, SA, and CM services for user
and kernel space applications and modules [TR-1]

The Offeror's OpenIB access layer should provide programmer friendly API's to Subnet
Management, Subnet Administration, and connection Management services. These API's should be
implemented and provided for both user and kernel space applications. The API's should be easily
extensible where service extensions to the InfiniBand standard are clearly denoted by their function
name.

2.2.14 Enhancements to Verbs API for URDMA [TR-2]
The Offeror's OpenIB software stack should include enhancements to the software transport verbs
to define and implement an unacknowledged, Unreliable RDMA capability. This capability is
denoted URDMA. The Offeror should work with the IBTA to get these or similar URDMA
enhancements accepted into the InfiniBand architecture specification. If accepted by the IBTA,
consistent with this project's duration, the Offeror should modify the implemented URDMA
capability in the delivered software stack.

OSSODA IBA SOW

 - 10 -

2.2.15 Enhancements to Verbs API for UD Atomic Operations [TR-2]
The Offeror's OpenIB software stack should include enhancements to the software transport verbs
to define and implement an unacknowledged, Unreliable atomic capability. This capability is
denoted UD atomic. The Offeror should work with the IBTA to get these or similar UD atomic
enhancements accepted into the InfiniBand architecture specification. If accepted by the IBTA,
consistent with this project's duration, the Offeror should modify the implemented UD atomic
capability in the delivered software stack.

2.2.16 High Performance URDMA Operations [TR-2]
The Offeror should deliver OpenIB unreliable datagram (UD) RDMA operations that will obtain
95% of the LAB for the supported IB devices. Both the kernel and user space interfaces should
deliver this level of performance.

2.2.17 High Performance UD Atomic Operations [TR-2]
The Offeror should deliver OpenIB unreliable datagram (UD) atomic operations (fetch and add,
compare and swap) that should obtain three µs (micro-second) latency on supported IB devices.
Both the kernel and user space interfaces should deliver this level of performance. The latency
should be measured from a user process on one node to another user process on any other node in
the cluster.

2.2.18 High Performance Gather/Scatter operations [TR-2]
The Offeror's delivered OpenIB access layer should obtain 95% of the BLAB for scatter/gather
transfers with large memory segments. Transfers with small segments should be no slower than
individually posted work requests.

2.2.19 Support for service level to virtual lane mapping, partitioning, automatic path
migration, and multi-path routing [TR-2]

The Offeror should describe the proposed strategy for designing and implementing an OpenIB
access layer that will expose service level to virtual lane mapping, partitioning, automatic path
migration, and multi-path routing features.

2.3 InfiniBand Network Management [MR]
The Offeror's OpenIB stack shall include components for Subnet Management (SM), Subnet
Administration (SA), Connection Management (CM), and HPC routing. High performance computing
imposes unique requirements for performance and scalability on the SM, SA, CM, and routing. The
Offeror's OpenIB stack shall include a scalable SM and optimized algorithms for fabric initialization and
connection establishment. Routing algorithms optimized for high performance computing are also
critical for enabling application scalability to thousands of nodes. The SM and CM scalability shall
require maintaining fast fabric initialization and connection establishment across fat-tree and Clos
networks with at least 4,096 host ports. The Offeror shall make all additions and modifications to the
existing OpenSM found at www.openib.org.

2.3.1 Subnet Manager and Subnet Administrator for HPC Clusters [TR-1]
The Offerors delivered IB Subnet Manager (OpenSM) and Subnet Administration (SA) components
should be fast, scalable and reliable. The Offeror's OpenSM should initialize a single switch
configuration of 144 port or greater within 2 seconds. The OpenSM is scalable if it can initialize a
fat-tree or Clos network configuration with 4,096 host ports in less than 30 seconds with no
knowledge of the IB fabric, and in less than 15 seconds given the topology information. The
OpenSM should utilize speculative assignment of historical LIDs to avoid rediscovery of full
topology at every reboot and the fast dump and restore of routing tables. To meet the scalability

OSSODA IBA SOW

 - 11 -

requirements for OpenSM, the Offeror's OpenSM should be a distributed subnet manager rather
than a centralized subnet manager. The SA is scalable if a single SA instance supports an aggregate
performance of at least 200 queries per second for 4096 nodes. All administration functions should
be accessible from a Linux command line and scriptable utilizing EXPECT (http://expect.nist.gov/)
and regular expressions to denote groups of components. Both the OpenSM and SA components
are reliable if they successfully complete their respective operations or return correct error codes
except for one in ten thousand (1 in 1x104) attempts. Both the OpenSM and SA interfaces should
allow system administrators to issue multiple commands in a single transaction. Each command
should be executed within 30 seconds.

2.3.2 Fast and Scalable Connection Manager [TR-1]
The Offeror's delivered Connection Manager (CM) should configure an all-to-all connection
topology in a single 288 port configuration with 1152 processes (4 processes per node, and 1 port
per node) in less than 5 seconds without connection caching, and within 2 seconds with connection
caching. The Offeror's delivered CM should configure an all-to-all connection topology in a 4,096
port fat-tree configuration with 16,384 processes (with 4 processes per node, and 1 port per node) in
60 seconds or less without connection caching, and in 15 seconds or less with connection caching.

2.3.3 Network topology awareness and verification services [TR-2]
The Offeror's OpenSM and SA should provide services for topology information and verification
services to diagnostic and management tools, and upper layer protocols such as MPI. The
information should be provided in the form of a text based list of the following: number of host
HCA's, port number on switch, internal ASIC on the switch that each port on the HCA is a attached
to, blade number on switch, switch number, neighboring nodes on this ASIC, neighboring node on
this blade, any facilities information that can be input (rack number, placement, cable labels, etc.),
link speed of each of the HCA connections, number of active links per HCA, number of active links
per ASIC, link speed of active links per ASIC, number of active links per switch blade, number of
active links per switch, and number of network planes.
The information should be defined in the section on Scalable InfiniBand Diagnostics and
Management tools and should be available in the various forms necessary for any complete
diagnostic software. It is also necessary for node allocation from MPI and location awareness from
within MPI. Issues of placement and awareness can be used to improve load balancing as well as
assessing potential performance issues. This in the general case answers the question needed by
many applications of neighborhood definition as well as self discovery. Allowing MPI the
necessary information to properly place jobs on the correct nodes with respect to their co-workers
should lead to performance increases. The Offeror’s OpenSM and SA should provide this
information and access to it from a Command Line Interface (CLI), an Application Program
Interface (API), and a Graphical User Interface (GUI). These tools should be used for High Level
Languages as well as for the basis of more complete and robust diagnostics.
From the information supplied in any of the necessary forms, the Offeror should provide derived
information that can be aggregated into options like Distance Graphs. A Distance Graph is defined
as follows: Let D be a set of positive numbers containing 1, then the D-distance graph X (D) on a
nonempty subset X of Euclidean space is the graph with vertex set X and edge set, where d(x,y) is
the Euclidean distance between vertices x and y. Various visual displays of the topology of the
interconnect fabric should be generated when the information is provided. This should be generated
and verified using various Open Source graph packages, like Boost Graph Library which can be
found at www.boost.org. Graphical displays of the system fabric with “drill down” capabilities,
color enhanced coding for failed modules and constant link state and speed monitoring are
considered very desirable. Additional information that can be generated should be graphs and

OSSODA IBA SOW

 - 12 -

information concerning routing analysis, route cost analysis, best route placement, optimized access
patterns based on application requirements as well as many others.
Another very important requirement is plug & play for rapid updates and verification to all of the
information when any element of the environment is perturbed. Verification of uniqueness of Node
ID’s, GUID’s, etc. must be maintained in the event of incomplete system verification of
replacement parts or modules.
Verification services may use the diagnostics delivered in section 2.3

2.3.4 Optimized routing algorithms for High Performance Computing [TR-2]
The Offeror's delivered subnet manager and administrator should have optimized routing algorithms
for fat-tree and Clos topologies. The routing algorithms should reduce network congestion and hot-
spots in standard static routing. Suggestions for dynamic and adaptive routing extensions to the
InfiniBand standard should also be considered.

2.4 Scalable InfiniBand Diagnostic and Management Tools [MR]
Scalable InfiniBand diagnostic and management tools are essential to providing a stable cluster
environment and to minimizing system testing and integration time. Diagnostic tools shall be able to
accurately diagnose failures of the InfiniBand network and hosts, to verify cluster topology, and to
explore InfiniBand fabric setting and routing. Management tools shall allow network booting over
InfiniBand, and provide tools for distributed firmware installations across cluster switch and nodes.

2.4.1 Fast, Scalable and Reliable Interconnect Diagnostics [TR-1]
The Offeror's delivered OpenIB software stack should have scalable and reliable diagnostics
(command line utilities and libraries) that should determine defective cables, cable connectors,
ASIC ports, switch ports, and host channel adapters. These diagnostics should have the capability
to determine component failure down to Field Replaceable Units (FRU). These diagnostics are fast
if they can reliably diagnose problems for single switch configurations within 10 minutes. These
diagnostics are scalable if they can reliably diagnose problems in fat-tree and Clos switch
configurations with 4,096 node ports in less than 60 minutes. These diagnostics are reliable if they
complete the diagnosis process with false-positive or false-negative errors reported that occur less
than one in one thousand (1 in 1x103) attempts. The diagnostic tools should have the ability to
check for HW and SW versions consistency and compatibility.
Diagnostic tools should use the OpenSM and SA defined in section 2.3.1, the CM defined in section
2.3.2, and the network topology and verification services defined in section 2.3.3
The diagnostic tools (application codes and libraries) should have error messages that may be easily
interpreted by University personnel with minimal IB training.
Hardware diagnostic tools should consist of an Open Source API and Open Source command line
tools utilizing published interfaces to vendor specific (potentially proprietary) hardware features.
The published interfaces to vendor specific (potentially proprietary) hardware features should be
provided in binary only form.

2.4.2 Host Side Diagnostic and Management Tools [TR-1]
The Offeror's delivered OpenIB software stack should have host side diagnostic tools. These
diagnostic tools should be capable of obtaining information on how many HCAs are in the node,
how the node is configured, the state of the IB drivers, the number of network planes the node is
attached to, the speed of IB links, implemented services, route configurations, and performance.
The host management tools should support scalable network flash of HCA firmware. All diagnostic
and management information should be accessible through an API and CLI. The tools should be

OSSODA IBA SOW

 - 13 -

capable of obtaining network performance counters and statistics at the node level. The tools
should be capable of probing the device driver state, and of performing HCA and software version
consistency checks. The host side diagnostics should use the OpenSM, SA, CM, and tools defined
in sections 2.3.1-2.3.3.

2.4.3 Fabric Explorer and Debugging Tools [TR-1]
The Offeror's OpenIB stack should include the tools vping, openibdump, openibroute, and
openibwalk. Vping may be for non-ip based communication protocols. Openibdump should be a
tcpdump for IB. Openibroute should test each piece of silicon along a route and report back status
of the components and latencies along paths. Openibroute should use all routes to all potential
destinations. Openibwalk should use a specified route table to verify that routes exist and that all
destinations are reachable. The Offeror's OpenIB stack should also support the standard ip tools
(for example, tcpdump, traceroute, ping, and netperf) running over IPoIB and SDP.

2.4.4 Fabric performance test suite for scaling, bandwidth, and latency [TR-2]
The Offerors delivered OpenIB software stack should include software to test the performance,
scaling, and congestion management attributes of the IB infrastructure.

2.4.5 InfiniBand Route Visualization [TR-2]
The Offerors delivered OpenIB software stack should include software to display IB route
information in a visual presentation format (pictures, not words or numbers) that is easily
understandable by someone who is not an expert in IB technology.

2.4.6 Cluster Topology Visualization Tools [TR-2]
The Offerors delivered OpenIB software stack should include software to discover and display IB
component and topology information in a visual presentation format (pictures, not words or
numbers) that is easily understandable by someone who is not an expert in IB technology.

2.4.7 Topology verification tools [TR-2]
The Offerors delivered OpenIB software stack should include software to discover and verify IB
component and topology information.

2.5 InfiniBand Upper Layer Protocols [MR]
The Offeror's OpenIB software stack shall include the following HPC upper layer protocols: IPoIB,
SDP, MPI-2, and Sandia Portals. The intent of these requirements is to add InfiniBand support for the
existing Open Source MPI-2 implementations, and not to develop a new MPI-2 library. The intent of
these requirements for Sandia Portals is limited to integrating/porting existing InfiniBand Portals
implementations into the OpenIB software stack (www.openib.org).

2.5.1 High Performance IPoIB [TR-1]
The Offeror's OpenIB software stack should support IP over InfiniBand (IPoIB) protocol as defined
in InfiniBand specification available at www.infinibandta.org. The delivered IPoIB implementation
may achieve 75% of aggregate link bandwidth with less than 25% of a single CPU utilization.

2.5.2 IPoIB with DHCP [TR-2]
The Offeror's IPoIB should support DHCPv6 as defined in (http://www.ietf.org/rfc/rfc3315.txt).

2.5.3 High Performance SDP [TR-1]
The Offeror's OpenIB software stack should include Socket Direct Protocol (SDP) protocols as
defined in the InfiniBand specification available at www.infinibandta.org. The delivered SDP

OSSODA IBA SOW

 - 14 -

implementation should achieve 90% of aggregate link bandwidth with less than 25% of a single
CPU utilization.

2.5.4 SDP transparent sockets support [TR-2]
The Offeror's SDP should use an optional socket offload modules for transparent support for user
and kernel sockets.

2.5.5 Sandia Portals [TR-1]
The Offeror's OpenIB software stack should include the Sandia Portals protocol
(http://sourceforge.net/projects/sandiaportals). The intent is to integrate/port an existing Sandia
Portals InfiniBand implementation into the OpenIB software stack. The Sandia Portals InfiniBand
implementation should support RDMA operations.

2.5.6 Open Source MPI 2.0 [MR]
The Offeror's OpenIB software stack shall include the Message Passing Interface 2.0 (MPI-2)
defined in (http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html) except for dynamic
tasking. Performance enhancements shall be implemented in a general fashion to benefit any
communicators, data type objects, and blocking and non-blocking point to point communications.
It is anticipated that the MPI-2 one-sided communications shall be provided, but not optimized.

2.5.6.1 NAL for MPI-2 [TR-1]
The Offeror's OpenIB MPI-2 library should have a network abstraction layer (NAL). This layer
should abstract all interactions between the upper layers of MPI library and the OpenIB software
stack. This NAL should provide a framework for implementing separate network modules, for
example InfiniBand, Ethernet, Quadrics ELAN4 or Myrinet, with this SOW only focusing on the
InfiniBand module.

2.5.6.2 MPI-2 Infrastructure [TR-1]
The Offeror's OpenIB MPI-2 library should use the Offerors OpenIB CM, SA, OpenSM
component as appropriate. In particular, the MPI-2 library should use the OpenIB CM to
manage connections.

2.5.6.3 Low Latency MPI-2 Interrupt Mode [TR-1]
Latency for interrupt (non-polling) style communications in MPI-2 library should be within 10%
of that for polling mode.

2.5.6.4 High Bandwidth MPI-2 [TR-1]
The sustained single task and aggregate MPI message bandwidth delivered to/from each node
should be at least 90% of the LAB (i.e., 90% when sending/receiving messages of a size that
optimizes system performance with MPI_SEND, MPI_RECV or MPI_ISEND, MPI_IRECV
pairs) and 90% of the BLAB (i.e., 90% with MPI_SENDRECV or MPI_ISENDRECV pairs).

2.5.6.5 Low Latency MPI-2 [TR-1]
The MPI-2 library latency, as measured by sending a minimum length MPI message from a
single MPI task user program memory on one cluster node to one other MPI task user program
memory on any other node in the cluster and receiving back an acknowledgment divided by two
(standard MPI user space MPI_Send/MPI_Recv and MPI_Isend/MPI_Irecv ping-pong test),
should be less than 3.0 micro-seconds (3x10-6 seconds) for PCI-Express adapters and 5.0 micro-
seconds (5x10-6 seconds) for PCI-X 64b/133 MHz adapters.

OSSODA IBA SOW

 - 15 -

The MPI-2 library latency, as measured by sending a minimum length MPI message from a
single MPI task user program memory on one cluster node to one other MPI task user program
memory on the same node and receiving back an acknowledgment divided by two (standard MPI
user space MPI_Send/MPI_Recv and MPI_Isend/MPI_Irecv ping-pong test), should be less than
1.0 micro-seconds (1x10-6 seconds).
When measured between any two nodes in the system with one MPI task per CPU on each node
for 8-way or smaller SMPs, the MPI user space ping-pong latency should be less than 5.0 micro-
seconds (5x10-6 seconds) for PCI-Express adapters and should be less than 10.0 micro-seconds
(1x10-5 seconds) for PCI-X 64b/133 MHz adapters.

2.5.6.6 High Performance and Scalable MPI Collective Operations [TR-1]
The delivered MPI-2 library should support scalable global operations under normal operating
conditions. This should be measured by the GLOBAL_OP benchmark. That is, the
GLOBAL_OP benchmark should measure at least the following MPI global operations:
MPI_Allreduce, MPI_Reduce, MPI_Broadcast, MPI_Barrier, and MPI_Alltoall. The Offeror's
MPI-2 library should implement all the listed global operations utilizing InfiniBand hardware
based multicast and atomic primitives. The MPI global operations should be measured with the
following methodology: for a given task count, iterate 10,000 times over doing one second of
floating point work followed by the MPI global operation with one 64b floating point value and
repeat. The runtime per iteration should be measured as a function of MPI task count (NTASK)
from 2 up to the number of maximum number of MPI tasks supported on the system. The
runtime per iteration as a function of NTASK should remain constant or increase by at most the
log2(NTASK). This benchmark should be run under conditions matching those of the general
workload (i.e., special calls requiring root access that perform task binding to CPUs or changing
thread/process/task priorities within the application is specifically not allowed) with normal
system daemons running under normal operating conditions.

2.5.6.7 Optimize MPI data-types communication to achieve high performance for non-
contiguous data transfers [TR-2]

Delivered bandwidth for MPI-2 for non-contiguous data transfers should be no more than 15%
slower than for contiguous operations with the same number of bytes in the payload.

2.5.6.8 Performance Scalability[TR-2]
The MPI implementation should permit scalability to cluster sizes anticipated by NNSA.
Furthermore, overhead associated with the MPI layer should remain a set percentage of the
underlying fabric capability regardless of communicator size. Care should be taken to avoid
built-in limitations to scalability such as fixed size tables and serial bottlenecks. Dynamic
allocation of resources should be used to allow MPI to adapt naturally to the resource
requirement. The validation test for this requirement should be an all-to-one of 4,096 MPI tasks
writing 1 MB buffers. For 4,096 MPI tasks the performance metric should be 90% LAB for the
receiving node.

2.5.6.9 Memory Scalability [TR-2]
The delivered MPI-2 library buffers should be designed so that the buffers requirement is not
dependent on the maximum size of messages and should be a fixed amount (buffer pool
approach) or an amount that grows slower than linear as a function of the number of MPI tasks in
the job. The delivered MPI-2 library buffers should be managed so that an application can
control a portion of buffer space required for point-to-point and all-to-all communications. In

OSSODA IBA SOW

 - 16 -

particular, the University desires that if an application guarantees that receives are posted before
sends on point-to-point messages, then it be possible to avoid MPI staging buffers completely.
The Offeror should deliver (electronic) written documentation that describes the performance
features of the MPI implementation for each software release on the delivered hardware. All
environmental settings that impact MPI operation, buffering and performance and their impact to
64b user applications performance should be tested and their effectiveness and reliability
documented.

2.5.6.10 MPI-2 Thread Safety [TR-2]
The MPI-2 library should be a thread compliant implementation allowing multiple threads within
an MPI task to make MPI communication calls. The delivered MPI should support programming
models used by ASC code teams such as MPI everywhere and a mix of MPI and threads (explicit
thread calls or OpenMP). The Offeror should provide MPI-2 design documentation describing
the thread safety implementation.

2.5.6.11 Multiple HCA per SMP [TR-2]
The Offeror's MPI-2 library should support a scalable design for multiple host channel adapters
per SMP node. The Offeror's MPI-2 library should support single and multiple network planes.
(The Offeror should describe in their proposal, the proposed strategy for designing the MPI-2
library in order to obtain near linear speed up from multiple HCAs per SMP node.)

2.5.6.12 Fast, Reliable, Scalable MPI Job Launch [TR-3]
The Offeror's MPI-2 implementation should include a mechanism for fast, reliable, scalable MPI
job launch. The job launch capability should be a Linux command line interface that allows non-
root users to launch jobs. The University will approve the Offerors MPI-2 job command line
user interface design. The Offeror should describe the architecture of the MPI-2 job launch
facility in their proposal. The job launch facility is fast if it launches a 4 task MPI job on 4 nodes
in less than 10 seconds. The job launch facility is scalable in time if large job launch is sub-
linear in the number of tasks launched and is on average less than 300 seconds with standard
deviation less than 10 seconds for 4,096 MPI task jobs when measuring 200 successive jobs.
This time should be measured with a job that calls MPI_init(), MPI_Finalize(), and then
terminates. The job launch facility is reliable if it successfully completes or returns correct error
codes correctly except for one in one billion (1 in 1x109) attempts. The MPI job launch facility
should utilize in-band IB communications mechanisms.

2.5.6.13 High Performance and Scalable MPI Gather/Scatter [TR-3]
The delivered MPI-2 library gather/scatter operations should obtain 95% of the BLAB for
scatter/gather transfers with large memory segments. Transfers with small segments should be
no slower than individually posted work requests.
The performance for a single segmented MPI-IO file should be within 90% of the bandwidth of a
similar segmented file generated by the POSIX interface for the University provided test
program IOR. The intent of this requirement is to ensure efficient generation and communication
of distributed data types such as those commonly found with MPI-IO programs.

2.6 High Performance Computing Stability and Robustness
HPC environments require stable and robust software environments.

OSSODA IBA SOW

 - 17 -

2.6.1 Stability [TR-1]
The Offeror's delivered OpenIB Software Stack should be able to sustain a workload consisting of
50 or more parallel applications with task sizes ranging from 16 to 4,096 and with run times ranging
from 1 minute to 24 hours for 7 days without interruption of applications and without loss or
corruption of user or system data due to Offerors provide OpenIB software stack.

2.6.2 Robustness [TR-1]
The Offeror's OpenIB Software Stack should be robust. The software stack is robust if the
variations in application runtime are less than 5% of their overall runtime and the software can
handle a wide range of application IB usage patterns and the software can handle hardware Field
Replaceable Unit (FRU) by gracefully degrading the network and not causing catastrophic network
unavailability under FRU failure. Other attributes of robust software stack include being able to
mix components (switches and adapters) from multiple IB vendors in a single fat-tree or Clos
switching network for large clusters.

OSSODA IBA SOW

 - 18 -

3 SOFTWARE DEVELOPMENT
The following requirements deal with the types of systems that need to be supported and the software
development and testing practices for the project.

3.1 Platform and OS Independence and Portability [MR]
Platform independence and portability is critical to maintaining a flexible HPC software environment.
Support for the following environments shall be requirements (if designated with a MR) of the open
source software regression testing suite. The InfiniBand software support matrix for various versions of
the Linux kernels (2.6 and RHEL), gcc, glibc, POSIX thread libraries, and other core system
components shall be revised on an ongoing basis by the University and the successful Offeror. The
support matrix shall include (if designated with a MR), but is not limited to, the following areas.

3.1.1 Tracking Latest 2.6 Kernels [MR]
The Offeror's OpenIB Software Stack development shall track and support the major 2.6.x kernel
releases at kernel.org. The stack shall be integrated into the Linux 2.6 kernels at kernel.org. The
Offeror's OpenIB Software Stack production release candidates shall support Linux clusters using
one 2.6.x kernel and operating system image per node (with or without disks).

3.1.2 Tracking Latest RHEL Kernels [TR-1]
The Offeror's OpenIB Software Stack development should track and support the major RedHat
Enterprise Linux (RHEL) releases. The stack should be integrated into the RHEL kernels. Offerors
OpenIB Software Stack production release candidates may support Linux clusters using one RHEL
kernel and operating system image per node (with or without disks).

3.1.3 Tracking BProc Linux [TR-1]
The Offeror's OpenIB Software Stack and kernel work should support Linux clusters using the
BProc single system image software found at bproc.sourceforge.net and www.clustermatic.org. The
Offeror's OpenIB Software Stack should support BProc 4.0, and continue to track future BProc
releases within the period of performance of the proposed Subcontract.

3.1.4 Linux Normal Format Coding Style [TR-1]
The Offeror should follow the Linux kernel coding style. The coding style guidelines can be found
in the Documentation/CodingStyle file in the Linux 2.6 kernel code tree.

3.1.5 Support for Intel IA32 architecture [TR-1]
The Offeror's OpenIB Software Stack should be deployed and tested on the Intel IA32 architecture.

3.1.6 Support for Intel and AMD x86-64 [TR-1]
The Offeror's OpenIB Software Stack should be deployed and tested, with 32 and 64 bit
applications on a 64 bit operation system, on the AMD Opteron and the Intel EM64T (Xeon-64)
architectures.

3.1.7 Support for Intel Itanium (IA64) [TR-1]
The Offeror's OpenIB Software Stack should be deployed and tested, in 64-bit mode, on the Intel
Itanium (IA64) architecture.

3.1.8 Tracking Latest SuSE Kernels [TR-3]
The Offeror's OpenIB Software Stack development should track and support the major SuSE Linux
releases. The stack should be integrated into the SuSE kernels. Offerors OpenIB Software Stack

OSSODA IBA SOW

 - 19 -

production release candidates should support Linux clusters using one SuSE kernel and operating
system image per node (with or without disks).

3.1.9 Support for IBM PowerPC 970 [TR-3]
The Offeror's OpenIB Software Stack should be deployed and tested, for 32 and 64-bit applications
on a 64-bit operating system, on the IBM PowerPC 970 architecture.

3.2 Open Source Software [MR]
All software developed under this Subcontract shall be released under a University approved Open
Source license (see the Sample Subcontract) and delivered to the University with source code.

3.2.1 Documentation [MR]
End user documentation, component interface documentation, application programming interface
(API) documentation and software test suites should be provided as part of the open source release.
The methods used for documentation and testing should be broadly available—not requiring
proprietary products with limited access. There shall be documented tunables in all provided
software. List tunables, definitions and locations, recommended settings and how to change
tunables, impact of changes of tunables, dependencies among tunables.

3.2.2 Source Code Documentation System [TR-1]
The Offeror's OpenIB Software Stack should use a source code documentation system such as
doxygen (www.doxygen.org). Running 'make documentation' at any level should process all
doxygen tags produce documentation for that code.

3.2.3 Access to Source Code Repository [TR-1]
Read/Write access to the software source repository should be provided to individuals, designated
by the University, at LLNL, LANL, and SNL. Read access to the software should be broadly
available. Source code should be provided in a form that can be installed at openib.org under the
Subversion revision control system.

3.3 Software Build Environment [TR-1]
The following target requirements deal with the tools and environment the Offerors Software Stack may
be developed with.

3.3.1 Development and Testing with GNU compilers [TR-1]
The Offerors delivered OpenIB Software Stack should compile, load and run utilizing the GNU
compilers and standard Linux code development tool chain (compilers, loaders, etc). The Offerors
delivered OpenIB Software Stack, testing harness and application tests should be compiled and run
utilizing the GNU compilers and standard Linux code development tool chain and utilities (e.g.,
bash for scripts) for all testing done for this SOW.

3.3.2 Support for NPTL [TR-1]
The Offerors delivered OpenIB Software Stack should support the Native POSIX thread library
(NPTL). Documentation can be found at http://people.redhat.com/drepper/nptl-design.pdf

3.3.3 Build and Install Requirements [TR-1]
Offeror delivered software should be manipulated (build, install, and other operations) with Linux
“make” utility utilizing Linux style “makefiles”.

OSSODA IBA SOW

 - 20 -

Software may be installed by running “make install”. Tags should be built in a given directory and
subdirectories by running “make tags and/or “make etags”. Shell scripts are not an acceptable
alternative to makefiles.
For hierarchical build trees it should always be possible to build a subtree by running make in the
head of that subdirectory.

3.3.3.1 Target Directory Independence [TR-1]
Offerors Software Stack, tools, and diagnostics should be constructed so that the end-user may
set the head directory for source code, binaries, libraries, kernel modules, documentation and
other components. In other words, Offerors Software Stack should be constructed so it may
not require special path names or other built-in assumptions.

3.3.3.2 Linux Kernel Tree Independence [TR-1]

The Offeror’s InfiniBand kernel drivers build and install mechanisms should be constructed so
that the drivers are buildable both inside and outside the Linux kernel tree structure.

3.3.3.3 GNU Autotools [TR-1]

The Offerors OpenIB software stack should utilize GNU Autoconf, Automake, and Libtool to
enable multiple platform support. The GNU Autotools should provide a superset of
capabilities needed to support all other target requirements for supporting build environments
for several different Linux distributions. See http://sources.redhat.com/autobook/ for more
information.

3.3.3.4 LSB Compliance [TR-2]

The Offerors OpenIB stack should be compliant with the Linux Standard Base (LSB) that
specifies an interface between an application and a run-time environment. Many distributions
have achieved LSB certification for their run-time environments. The LSB specification
should be obtained at http://www.linuxbase.org/spec/.

3.4 Extensibility and Usability of Design [MR]
Documentation specifications of system interfaces and extensibility interfaces shall be provided to
enable extending the work to other systems.

3.4.1 Ease of Extensibility [TR-1]
New features should be easy to add, both by the Offeror and by other collaborators working with
the software. (The Offeror’s proposal should describe the software architecture that makes this
possible. Examples are extensions to Verbs and other access layer components, to management
tools and diagnostics, and to MPI-2, SDP, IPoIB, and Sandia Portals.

3.4.2 Interface Usability Testing [TR-1]
The Offeror should provide an interface usability testing plan that involves tests with University
designated users on real applications before the interfaces are finalized.

3.5 Software Maintenance and Support [MR]
The Offeror shall provide maintenance and support of the OpenIB Software Stack for the duration of
period of performance of the proposed Subcontract.
The Offeror shall designate a point of contact that shall have full knowledge of the Offerors Open
Source software stack and shall be able to diagnose problems in the field and perform modifications as

OSSODA IBA SOW

 - 21 -

appropriate and required. The Offerors point of contact shall be approved by the University Technical
Representative.

3.5.1 Software Support Mechanisms [TR-1]
Software bugs should be tracked by the GNATs or Bugzilla tracking mechanism. Software bugs
should be prioritized as: Severity 1, Severity 2, Severity 3, or Severity 4. Software bugs should
only be prioritized by the University Technical Representative (UTR) or other designated
University staff. Software bugs should only be declared as fixed or resolved by the UTR or other
designated University staff. The various Severity levels should be defined as follows:

• A Severity 1 problem is a catastrophic problem that may severely impact the
University’s ability to conduct business. This may mean that the University’s
systems and/or InfiniBand hardware or software are down or not functioning and no
procedural workaround exists.

• A Severity 2 problem is a high-impact problem in which the University’s operation
is disrupted but there is capacity to remain productive and maintain necessary
business-level operations. The problem may require a fix be installed on the
University’s system prior to the next planned release of InfiniBand hardware or
software.

• A Severity 3 problem is a medium-to-low impact problem that involves partial, but
non-critical functionality loss. This category of problem impairs certain operations
but generally allows the University to continue to function. This may be a minor
issue with limited loss or no loss of functionality or impact to the University’s
operation.

• Severity 4 shall be assigned to general usage questions, recommendations for future
product enhancements or modifications or to calls that are provided to InfiniBand for
information purposes. There is no impact on the quality, performance or
functionality of the software.

3.5.2 Software Support Response [TR-1]
Severity 1 problems should be addressed not later than one working day after submission. The
Offeror should begin diagnosis of the problem with the University during the one day period. The
Offeror should commit all necessary resources to work on Severity 1 problems until such problems
are fixed. The Offeror should interact with University staff on an ongoing basis when any
outstanding Severity 1 problems exist. Severity 2 problems should be addressed not later than two
working days after submission. The Offeror should begin diagnosis of the problem with the
University during the two day period. The Offeror should commit all necessary resources to resolve
all Severity 2 problems within one week. The Offeror should interact with University staff on a
weekly basis when any outstanding Severity 2 problems exist. Severity 3 and Severity 4 bugs
should be addressed on an ongoing basis with weekly status reports.

3.6 Testing Environment [MR]
OpenIB stack release candidates with HPC capabilities shall be evaluated on DOE InfiniBand clusters at
Los Alamos, Sandia, and Lawrence Livermore National Laboratories. The following list of components
is available for testing within the Tri-Laboratory community. Only components available at this time
and based on publicly announced products are listed. Other environments are planned or are currently
available based on unannounced products. The Offeror shall plan to test utilizing these environments.
In addition, Offeror may propose other environments for testing of the OpenIB software stack. The

OSSODA IBA SOW

 - 22 -

proposals shall describe in detail the support matrix proposed for testing for at least the first deliverables
(section 4.2).

IBA RFP SOW
LIST OF SUPPORTED SW/HW

Version 2
May 28, 04 SuSE SLESRHELV3 2.6.x X86-64 IA-64 IA-32

Chip Sets
TR-1 ServerWorks Grand Champion LE, HE PCIX 64b/133MHz IA-32 ADEV, RoSE X X
TR-1 Grand Champion SLX PCIE x8 x86-64
TR-1 Intel E750x PCIX 64b/133MHz IA-32 MDEV, BIGDEV, CATAX X X
TR-1 i8870 PCIX 64b/133MHz IA-64 TDEV X X
TR-1 E2772 (Tumwater) PCIE x16, x8 x86-64 GALOIS X
TR-1 E7520 (Lindenhurst) PCIE x8 x86-64 X
TR-1 AMD 8111/8131 PCIX 64b/133MHz x86-64 BLUESTEEL, PANTA X X X
TR-2 nVidia CK8-04/IO4 PCIE x8 x86-64 X

HCA Interfaces
TR-1 IBA x4 Single & Dual PCIX 64b/133MHz BLUESTEEL, CATALYX X X X X
TR-1 IBA x4 Single & Dual PCIE x8 GALOIS X X
TR-2 IBA x12 Single PCIE x16
TR-3 IBA x12 Single & Dual PCIE x16

IBA Switches
TR-1 Mellanox 24 (IS3), 144 (IS3) port IBA x4 CADILLAC, CATALYST X X
TR-2 Voltaire ISR 9024, 9600, 9288 IBA x4 CADILLAC, CATALYST, RoSE X X X

Mellanox 96 port (IS2) IBA x4 BLUESTEEL X X

OSSODA IBA SOW

 - 23 -

4 PROJECT MANAGEMENT
Execution of this project requires close coordination between the University and the Offeror and the
OpenIB community. The following project management requirements and milestones are intended to
facilitate the successful completion of the project within budget and the specified schedule.

4.1 Project Plan [MR]
The Offeror shall deliver an overall project plan describing the development process that shall be
utilized in the project. The project plan shall also describe the oversight role of the University and how
the project shall be coordinated with the OpenIB effort. The project plan shall include weekly technical
telecons with the project participants, monthly status meetings or telecons to review technical progress
on specific detailed topics and quarterly face-to-face meetings for overall management reviews. The
project plan shall consist of two parts: 1) a Microsoft Project GANNT chart describing at least three
levels of details and assigning resources and estimated durations and dependencies between parts of the
project; 2) a written document describing the management of and strategy for executing the project. The
written project plan document shall indicate the project members and management structure. The
project plan shall include both development and testing activities.

4.2 Milestones [MR]
All milestones described below are suggested in order to facilitate the Offerors planning of the project.
Offeror may substitute a different milestone schedule, but a milestone schedule (with associated dates
and payments) must be included in the Offerors proposal. All dates referenced in the following
milestones are durations after the date the contract is executed.

4.2.1 Project Plan (1 Month)
The Offeror shall deliver a project plan meeting the requirements in section 4.1. In addition, the
Offeror shall complete the formation of the project and allocate resources according to the project
plan. This milestone is complete when the University Technical Representative (UTR) verifies that
the project has been formed, personnel have been assigned and approves the plan.

4.2.2 High Level Design Document (1 Month)
The Offeror shall deliver a high level design document describing the Offerors provided software
and plans for how it may become the OpenIB stack. The design document shall include Linux
kernel modules and plans for getting them into the 2.6.x and RHEL V3 Linux kernel. The Offeror
shall schedule a design review face to face meeting with the University. This milestone is complete
when Offeror survives a design review with the University and the UTR approves the design
document.

4.2.3 OpenIB Kernel Module, HCA Driver, and Core Access Layer (3 Months)
The Offeror shall deliver a core OpenIB access layer, Linux kernel modules, and HCA device driver
(for 2.6.x and RHEL V3). The core OpenIB access layer shall include a device driver framework
and other functions that need to be provided to the device driver. The Offeror shall also deliver
release notes and in-line documentation. This milestone is complete when the kernel modules and
device driver are accepted into the mainline Linux kernel (www.kernel.org).

4.2.4 OpenIB Software Alpha Stack HPC Design Document (4.5 Months)
The Offeror shall deliver a design document for OpenIB Access Layer, connection management
API, subnet management, and all HPC ULPs (MPI, IPoIB, SDP, and Sandia Portals) that enables
the HPC capabilities in this SOW. This milestone is complete when Offeror reviews the design with
Tri-Laboratory personnel and the UTR approves the design document.

OSSODA IBA SOW

 - 24 -

4.2.5 Alpha Release of OpenIB Access Layer with HPC capabilities(6 Months)
The alpha code drop for the full (core and non-core) OpenIB access layer shall meet the HPC
capabilities in this SOW. This release shall include API and CLI interfaces to CM, OpenSM, and
SA. This milestone is complete when the OpenIB access layer is accepted into the mainline Linux
kernel (www.kernel.org).

4.2.6 Alpha Release of OpenIB ULPs with HPC capabilities(9 Months)
The code drop for all HPC ULPs (MPI, SDP, IPoIB, and Sandia Portals) shall meet the HPC
capabilities in this SOW. This milestone is complete when 1.) SDP and IPoIB, with HPC
capabilities, are accepted into the mainline Linux kernel (www.kernel.org), 2.) Sandia Portals is
ported to the OpenIB access layer, and 3.) Alpha release of MPI-2 that meets SOW requirements is
provided.

4.2.7 OpenIB Stack Alpha Release HPC Test Plan (9 Months)
The Offeror, in collaboration with the Tri-Labs, shall provide a test plan for the Alpha release of the
OpenIB stack with HPC capabilities. This milestone is complete when UTR approves the test plan.

4.2.8 OpenIB Software Stack Alpha Release with HPC capabilities(12 Months)
The Alpha code release for the OpenIB software stack shall meet the HPC capabilities contained in
this SOW. The Alpha release shall include all devices drivers, kernel modules, access layer,
OpenSM, CA, SA, HPC ULPs, and diagnostic and management tools. This milestone is complete
when the Alpha Stack release meets the requirements of the Alpha stack test plan (section 4.2.7).

4.2.9 OpenIB Software Beta HPC Stack Design Document (12 Months)
The Offeror shall deliver a design document for the OpenIB Access Layer, connection management
API, and subnet management second release. This release shall meet all of the functionality,
performance and scalability and reliability requirements contained in this SOW. This milestone is
complete when Offeror reviews the design with Tri-Laboratory personnel and the UTR approves the
design document.

4.2.10 OpenIB Beta Stack with HPC capabilities Test Plan (15 Months)
The Offeror, in collaboration with the Tri-Labs, shall provide a test plan for the Beta release of the
OpenIB stack with HPC capabilities. This milestone is complete when UTR approves the test plan.

4.2.11 OpenIB Software Beta Stack Release (15 months)
The Offeror shall deliver a Beta code release for the OpenIB software stack that meets the HPC
capabilities contained in this SOW. The Beta release shall include device drivers, kernel modules,
access layer, CM , OpenSM, SA, HPC ULPs, and diagnostic and management tools. This
milestone is complete when the Beta Stack release meets the requirements of the Beta stack test
plan (section 4.2.10) and when the stack is accepted into the mainline Linux kernel
(www.kernel.org).

4.2.12 OpenIB Software Stack Final Release with HPC capabilities (18 Months)
The Offeror shall deliver an OpenIB Software Stack final release. This milestone is complete when
the delivered OpenIB Software Stack meets all functionality, scalability, performance and reliability
requirements of this SOW.

OSSODA IBA SOW

 - 25 -

5 GLOSSARY
Item Description
1X An InfiniBand interface width. 1X defines an interface with 2 differential pairs, 1

Transmit, 1 Receive. Provides 2.5Gbit/s full-duplex connections.
4X An InfiniBand interface width. 4X defines an interface with 8 differential pairs (4 per

direction), 4 Transmit, 4 Receive. Provides 10Gbit/s full-duplex connections.
4X DDR Double data rate InfiniBand interface. 4X defines an interface with 8 differential

pairs (4 per direction). Providing 5.0 Gbits/s per differential pair for 20 Gbit/s full-
duplex.

12X An InfiniBand interface width. 12X defines an interface with 24 differential pairs (12
per direction), 12 Transmit, 12 Receive. Provides 30Gbits/s full-duplex connections.

12X DDR Double data rate InfiniBand interface. 12X defines an interface with 24 differential
pairs (4 per direction). Providing 5.0 Gbits/s per differential pair for 60 Gbits/s full-
duplex.

API Application programmer’s interface. Syntax and semantics for invoking services
from within an executing application. All APIs shall be available to both Fortran and
C programs, although implementation issues (such as whether the Fortran routines
are simply wrappers for calling C routines) are up to the supplier.

ASC Advanced Simulation and Computing. Like its predecessor, ASCI, the ASC program
is A U.S. Department of Energy program established to ensure confidence in the
safety, performance, and reliability of its nuclear stockpile through better computer
simulations. The ASC program is now active.

ASCI Accelerated Strategic Computing Initiative. A U.S. Department of Energy program
established to ensure confidence in the safety, performance, and reliability of its
nuclear stockpile through better computer simulations. For the years 1996 through
2003, the ASCI program permitted the required degree of safety without nuclear
testing. The follow-on program to ASCI is ASC.

BLAB Aggregate Bi-directional Link Bandwidth (BLAB) is defined as the minimum of the
aggregate memory bandwidth, aggregate bus bandwidth, or the sum bi-directional
link peak user payload data bandwidth.

blocking
operation

An operation that does not complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a message is received or until the
channel is closed and no further messages can be received.

broadcast
operation

A communication operation in which one processor sends (or broadcasts) a message
to all other processors.

buffer A portion of storage used to hold input or output data temporarily.
Clos A network topology named after its inventor Charles Clos.
cluster A set of SMPs connected via a scalable network technology. The network shall

support high bandwidth, low latency message passing. It shall also support remote
memory referencing.

OSSODA IBA SOW

 - 26 -

Item Description
CM (Connection
Manager)

Service to establish, maintain, and status communication paths between remote
peers.

collective
communication

A communication operation that involves more than two processes or tasks.
Broadcasts, reductions, and the MPI_Allreduce subroutine are all examples of
collective communication operations. All tasks in a communicator must participate.

Communicator An MPI object that describes the communication context and an associated group of
processes.

Critical Path The serial chain of dependencies that most limits forward progress.
DDR Double data rate
Device Driver Linux device driver to function the IB host channel adapter devices on a node.
DHCP Dynamic Host Configuration Protocol – DHCP enables individual computers on an

IP network to extract their configurations from a server (the 'DHCP server') or
servers, in particular, servers that have no exact information about the individual
computers until they request the information. DHCP is often used to reduce the work
necessary to administer a large network (e.g. managing IP addresses).

Diagnostic &
management
tools

Commands and APIs to determine the hardware and software state of the IB
configuration and manipulate that configuration. IB Access Layer - Low level API
that exposes IB verbs, CM, SM and SA functionality in a vendor neutral manner.

Documentation All provided software should be documented so that personnel unfamiliar with the IB
stack structure may easily install and manage an IB cluster. Documentation should
be provided so that personnel may make code enhancements and extensions to any
software layer (driver, access layer, ULPs, diagnostics) of the IB software stack.

DOE The U.S. Department of Energy.
DPCL Dynamic Probe Class Library.
fairness A policy in which tasks, threads, or processes must be allowed eventual access to a

resource for which they are competing. For example, if multiple threads are
simultaneously seeking a lock, no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FT Fault tolerance or Fault tolerant.
FY Fiscal Year – The US government uses the fiscal year October 1 through September

30th. For example, FY04 is October 1, 2003 through September 30, 2004.
GB: Gigabyte. Gigabyte is a billion base 10 bytes. This is typically used in every context

except for Random Access Memory size and is 109 (or 1,000,000,000) bytes.
GiB: GibiByte. GibiByte is a billion base 2 bytes. This is typically used in terms of

Random Access Memory and is 230 (or 1,073,741,824) bytes.

OSSODA IBA SOW

 - 27 -

Item Description
GPL General Public License -- A legal software license arrangement developed by GNU

to promote open software. The licenses for most software are designed to prevent
users from sharing or changing it. By contrast, the GNU General Public License is
intended to guarantee the freedom to share and change free software - to make sure
the software is free for all its users. The GPL is designed to make sure that anyone
can distribute copies of free software (and charge for this service if they wish); that
they receive source code or can get it if they want; that they can change the software
or use pieces of it in new free programs; and that they know they can do these things.
The GPL forbids anyone to deny others these rights or to ask them to surrender the
rights. These restrictions translate to certain responsibilities for those who distribute
copies of the software or modify it.

GUI Graphical user interface. A type of computer interface consisting of a visual
metaphor of a real-world scene, often of a desktop. Within that scene are icons,
which represent actual objects that the user can access and manipulate with a
pointing device.

hot spot A memory location or synchronization resource for which multiple processors
compete excessively. This competition can cause a disproportionately large
performance degradation when one processor that seeks the resource blocks,
preventing many other processors from having it, thereby forcing them to become
idle.

HCA Host Channel Adapter. IBA expansion card that interfaces the IBA interconnect to
the cluster node I/O subsystem.

HEC High-end Computing
HT
(HyperTransport)

HyperTransport. HyperTransport is an I/O link. With clock speeds of up to 1.4 GHz
and Double Data Rate (DDR) signaling, HyperTransport technology provides an
effective throughput of 2.8 gigatransfers per pin-pair on a 32-bit link. This results in
a maximum aggregate throughput of 22.4 gigabytes per second, per link. (see
http://www.hypertransport.org/tech_overview.html)

HPC ULPs High Performance Computing Upper Layer Protocols include MPI, IPoIB, SDP, and
Sandia Portals.

IBA InfiniBand Architecture
IBTA InfiniBand Trade Association (http://www.infinibandta.org/ibta/)
InfiniBand
access layer

Includes the user-mode components for management services, SM query, connection
management, and work request processing, and the kernel mode components for
InfiniBand PnP, management services, resource management, connection
management, work request processing, and user-level proxy agent

IPoIB Internet Protocol over InfiniBand. IP specifies the format of packets, also called
datagrams, and the addressing scheme.

iSCSI iSCSI is Internet SCSI (Small Computer System Interface), an Internet Protocol (IP)-
based storage networking standard for linking data storage facilities, developed by
the Internet Engineering Task Force (IETF). By carrying SCSI commands over IP
networks, iSCSI is used to facilitate data transfers over intranets and to manage
storage over long distances.

OSSODA IBA SOW

 - 28 -

Item Description
iSER iSCSI Extensions for RDMA
kDAPL Kernel Direct Access Programming Library defines a single set of kernel-level APIs

for all RDMA-capable Transports. The kDAPL mission is to define a Transport-
independent and Platform standard set of APIs that exploits RDMA capabilities, such
as those present in IB, VI, and iWARP.

Kernel modules Changes to the Linux kernel needed to support the rest of the OpenIB software stack.
LAB Aggregate Link Bandwidth (LAB) is defined as the minimum of the aggregate

memory bandwidth, aggregate bus bandwidth, or the sum of uni-directional link peak
user payload data bandwidth.

latency

The time interval between the instant at which an instruction control unit initiates a
call for data transmission, and the instant at which the actual transfer of data (or
receipt of data at the remote end) begins. Latency is related to the hardware
characteristics of the system and to the different layers of software that are involved
in initiating the task of packing and transmitting the data.

LVDS Low voltage differential signaling. An electrical spec (EIA-644) used by InfiniBand.
LVDS is designed with an output voltage swing of 350mV at better then 400Mbps
into a 100 ohm load, across a distance of about 10 meters.

MPI Message passing interface. An industry-standard message-passing protocol that
typically uses a two-sided send-receive model to transfer messages between
processes.

MTBF A measurement of the expected reliability of the system or component. The MTBF
figure can be developed as the result of intensive testing, based on actual product
experience, or predicted by analyzing known factors.

nonblocking
operation

An operation, such as sending or receiving a message, that returns immediately
whether or not the operation was completed. For example, a nonblocking receive will
not wait until a message is sent, but a blocking receive will wait. A nonblocking
receive will return a status value that indicates whether or not a message was
received.

LANL Los Alamos National Laboratory (http://www.lanl.gov/)
LC Livermore Computing. The supercomputer center at Lawrence Livermore National

Laboratory
LLNL Lawrence Livermore National Laboratory (http://www.llnl.gov/)
M&IC Multiprogrammatic and Institutional Computing. Organization responsible for

providing unclassified computing to all programs at the University Lawrence
Livermore National Laboratory.

MB Megabyte. Megabyte is a million base 106 bytes. This is typically used in every
context except for Random Access Memory size and is 106 (or 1,000,000) bytes.

MiB: MebiByte. MebiByte is a million base 2 bytes. This is typically used in terms of
Random Access Memory and is 220 (or 1,048,576) bytes..

MPI Message Passing Interface.
MPI-2 Extensions to the MPI standard.

OSSODA IBA SOW

 - 29 -

Item Description
MPI I/O An MPI extension allowing for the manipulation of files on different file systems.
MR Mandatory Requirement. Mandatory requirements are items that are essential to the

University and reflect the minimum qualifications an Offeror must meet in order to
have their proposal evaluated further for selection.

MTBF A measurement of the expected reliability of the system or component. The MTBF
figure can be developed as the result of intensive testing, based on actual product
experience, or predicted by analyzing known factors.

NIC Network Interface Card. An expansion board you insert into a computer so the
computer can be connected to a network. Most NICs are designed for a particular
type of network, protocol, and media, although some can serve multiple networks.

NNSA National Nuclear Security Agency. The arm of the DOE which is responsible for
enhancing United States national security through the military application of nuclear
energy. The NNSA maintains and enhances the safety, reliability, and performance
of the United States nuclear weapons stockpile, including the ability to design,
produce, and test, in order to meet national security requirements. The NNSA also
supports United States leadership in science and technology.

OS Operating System.
parallelism The degree to which parts of a program may be concurrently executed.
PCI-Express PCI Express is a dual-simplex, point-to-point serial differential low-voltage

interconnect. Previously known as 3GIO and Arapahoe, PCI Express was announced
in April, 2002. PCI-Express allows a bandwidth up to 500 MB/sec duplex for each
link up to 8 GB/sec for sixteen lanes (x16).

PCI-X A follow-on initiative to PCI (Peripheral Component Interconnect). PCI-X allows a
bandwidth up to 1GB/sec for 64 bit bus running at 133 MHz. [Note that we
distinguish PCI-X and PCI-Express]

PERUSE MPI Performance examination and revealing unexposed state extension specification
– the specified API.

PMPI Profiling interface for MPI specified by the MPI standard.
Portals (Sandia
Portals)

Low-level API providing reliable and ordered communication for Lustre.
(http://sourceforge.net/projects/sandiaportals)

POSIX Portable Operating System Interface - A set of IEEE standards designed to provide
application portability between Unix variants. IEEE 1003.1 defines a Unix-like
operating system interface, IEEE 1003.2 defines the shell and utilities and IEEE
1003.4 defines real-time extensions.

QDR Quad Data Rate
RC Reliable Connection
RDMA Remote Direct Memory Access (RDMA) capability allows a processes executing on

one node of a cluster to be able to “directly” access (execute reads or writes against)
the memory of processes within the same user job executing on a different node of
the cluster.

OSSODA IBA SOW

 - 30 -

Item Description
reduction
operation

An operation, usually mathematical, that reduces a collection of data by one or more
dimensions. For example, the arithmetic SUM operation is a reduction operation
which reduces an array to a scalar value. Other reduction operations include
MAXVAL and MINVAL.

RHEL RedHat Enterprise Linux
RMA Remote Memory Access. A user-level communication protocol which provides

ability for a task to access memory of another task by the use of put/get operations.
Scalability Tested on 4,096 node physical fabrics and scaling properties simulated up to 16,384

nodes.
SDP Sockets Direct Protocol - Sockets Direct Protocol (SDP) is an IBA specific protocol

defined by the Software Working Group (SWG) of the IBA. The SDP specification
maintains traditional sockets SOCK STREAM semantics as commonly implemented
over TCP/IP, as well as support for byte-streaming over a message passing protocol,
including kernel bypass data transfers and zero-copy data transfers.

SA (Subnet
Administrator)

Service to store, track, and status the IB hardware configuration and routing
information.

SM(Subnet
Manager)

Software entity that discovers network topology, initializes the subnet, establishes
routes, and provides regular subnet sweeps.

SNL Sandia National Laboratories
SMP Shared memory Multiprocessor. A set of CPUs sharing random access memory

within the same memory address space. The CPUs are connected via a high speed,
low latency mechanism to the set of hierarchical memory components. The memory
hierarchy consists of at least processor registers, cache and memory. The cache shall
also be hierarchical. If there are multiple caches, they shall be kept coherent
automatically by the hardware. The main memory may be a Non-Uniform Memory
Access (NUMA) architecture. The access mechanism to every memory element
shall be the same from every processor. More specifically, all memory operations
are done with load/store instructions issued by the CPU to move data to/from
registers from/to the memory. A single SMP may be partitioned into one or more
nodes.

SOW Statement of Work
synchronization The action of forcing certain points in the execution sequences of two or more

asynchronous procedures to coincide in time.
Test harness and
modules

Software to automatically test the functionality, performance, reliability, and
robustness of the components of the OpenIB software stack.

TLP Thread Level Parallelism.
thread A single, separately dispatchable, unit of execution. There may be one or more

threads in a process, and each thread is executed by the operating system
concurrently.

Tri-lab Refers to the three U.S. national security laboratories: Lawrence Livermore National
Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories.

OSSODA IBA SOW

 - 31 -

Item Description
TR-1 Target Requirement, Priority 1. A highly desired characteristic or feature.
TR-2 Target Requirement, Priority 2. A characteristic or feature that is a lower priority

than corresponding TR-1 characteristics.
TR-3 Target Requirement, Priority 3. A third-tier characteristic or feature that is a lower

priority than corresponding TR-2 characteristics. TR-3 requirements are considered
stretch goals that boost a moderately useful system, taken together as an aggregate of
MR, TR-1, TR-2 and TR-3 requirements, into the highly useful category.

UD Unreliable Datagram
uDAPL User Direct Access Programming Library defines a single set of user-level APIs for

all RDMA-capable Transports. The uDAPL mission is to define a Transport-
independent and Platform standard set of APIs that exploits RDMA capabilities, such
as those present in IB, VI, and RDDDP WG of IETF.

ULP (Upper
Layer Protocols)

APIs for applications to perform IB communications operations. For this SOW,
ULPs shall refer to MPI-2, IPoIB, SDP, and Sandia Portals.

URDMA Unacknowledged, unreliable RDMA capability.
UTR University Technical Representative
VAPI InfiniBand Verbs Applications Programming Interface (VAPI).

